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SUFFICIENT CONDITIONS FOR STABILITY AND INSTABILITY

OF AUTONOMOUS FUNCTIONAL - DIFFERENTIAL EQUATIONS

Jack K, Hale

1. Introduction and notation. An autonomous functional-differential equation

with finite time lag is a generalization of the usual concept of differential
equations with retarded arguments of the form

£(t) = Fx(t), x(t-17), ..., x(t-7,)),
where the Tj are positive constants, In this paper, we will be concerned with\
the application of the ccncept of Lyapunov functionals to the determination of |
sufficient conditions for the stability of such systems. Lyapunov functionals
have been applied to these equations by many authors and the reader should con-
sult the book of Krasovskii [1] for a detailed bibliocgraphy. Lyapuncv func-
tionals can also be employed to discuss the stability of nonautonomous systems;
that is, systems in which F contains t explicitly, but we restrict ourselves
to the autonomous case since more general results are obtainable, In particular,
we wish to discuss the implications of a theorem of LaSalle [2] for ordinary
differential equations properly extended to functional-differential equations.

Some of the results of this paper have been announced in [3]: , and the present

paper contains the complete proofs of those results as well as some new results

: 4 ‘
on 1nstab111ty and many applications, AL exTeveion "Kﬁ" 2 WJ
<2 counfaad o.

la e
J To discuss functional-differential equations in the proper settlng, it is

necessary to introduce some notation. E" will denote the real Fuclidean space

of n-vectors and |x| will denote the norm of the vector x in E%.- If
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r >0 is given, C = C{{-r, 0] , En) will dencte the space of continucus fune-

tions with domain [-r, O] and range in En. The norm in this space will be

the uniform ones ||@f = max_rS 8<0 |®(8)] for @ in C. Suppose x is
any given function with domain [-r, ) and range in E'. For any t > 0,

@ thamelalion, o3 the -
we will lgt‘ X denotextbe restriction of x to the interval [t - r, t];
4naxL;¢FLu4uudzj)

Je—is, x5 an element of C defined by xt(e) = x(t + 6), -r <6 <O.

In other words, the graph of x, is the—seme—as the graph of x on [t - r, t]

t
exeept—ib—+e shifted to the interval [-r, 0]. The reader is urged at this

point to use extreme caution in distinguishing between the following symbols:

X is a function taking [-r, =] into En, Xy for t>0 1is a function taking

[-r, 0] into E°, x(t) is the value of x at t and xt(e) is the value
% (p) also fae a Mw%'ﬂ,huw G A wmomend,
If H is a given positive constant, we use the notation CH for the set

(¢ in C: |} < H}; that is, C, 1is the open ball in C of radius H.

of xt at 9;

If f(p) is a function defined for every ¢ in C, and %(t) is the
right hand derivative of x(t), we consider the following autcnomous functicnal-

differential equation:
(1) x(t) = f(xt), t >o0.

We say x(®) 1is a solution of (1) with initial condition ¢ in C, at

t = 0 if there is an A > 0 such that x(®) 1is a function from ([-r, A) intc

E' such that xt(¢) is in C

y for 0 <t <A, xo(m) =@ and x(®)(t) satis-

fies (1) for 0 <t <A,
In a manner}t;£; analogous to that used for ordl nary differential equaticns,

T
cone can prove the following results: If Af(m) is continuous in C thern for

H}
any © in CH’ there is a solution of (1) with initial condition @ at t = O,
If f(®) is locally Lipschitzian in @ then there is only one solution with

initial condition @ at t = O and the solution x(9) depends continucusly
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P the
upon @. Also, f(®) locally Lipschitzian in @ (or an even"weaker hypotheses
that f maps bounded sets into bounded sets) implies the solutions can be
extended in C wuntil the boundary of CH is reached.
It is clear that the differential-difference eguation discussed before

is a special case of (1). However, system (1) is much more general and, in

particular, could be of the form
-0
f(xt) = F(f—r x(t + 6)de).

If f£(0) = 0, then the solution x = O of (1) is said to be stable if
for every € >0, there isa & >0 such that [lo <& implies x (p) exists
for t >0, is in C; and llxt(cp)ll < e for all t >0. If, in aeddition, there
is an H, <H such that |9 <H, implies x,(9) isin C; for t >0 and

1
xt(CP) -0 a8 t —®, then the solution x =0 1is said to be esymptotically

stable¢
If V is a continuous scelar function on Cyr Wwe define Vu)(w) by the

following relation
{f(l)(tp) = §o+ -11; (V(xy(@)) - V(o))

2, Sufficient conditions for stability and instsbility. In this section, we

consider some stability and instability theorems for autonomous systems (1) along
thevlines of some results of LaSalle [2] on ordinary differential equations.
Part of this section appeared in a paper by Hale [3].

We will always suppose that the function f£(@) in (1) is continuous and
locally Lipschitzlaen on CH' When H = =, <then CH = C and we will be speak-

ing of global stability( H, = =),
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Since (1) is autonomous, it is quite natural Lo Cunsider eystea (1)

as ceflining moti-ns cr paths in C., In fuct, we can define 2 motion through

§ 25 the set of functions in C glven by u . {v) vhere the interval
3 t
O0stcA
C-v, A) 1is the interval of definition of x(¢). An elewent ¥ of C 1is iz

0(c), the @-1imit set of @, if x(P) is defined on [-r, ) anéd there 1ia

a1 seguence of nonnegative real numbers tn, tn ~+® as n —® such *that

th (3) - W] 20 es n—ow, Aset M in C 1is called an invariant set if
g}

for any @ in M, there exists a function x, depending cn ¢, cefined con (-m,w;,

2, in M for t in {-w,w}, x, = 9, such that if x*(u,xo_) is the sclution (1)

t
with initial value x_ at C, then x*(c,xa) = x, for a1l t > 0. Notice that
to any element cf an invariant set there corresponds a solution which must be
the simplest form of system (1).

For any H, <H, there is a constant L such that | f£(g)| <L for ell

o with o g H;. From this, one easily obtains the following results

Lemza 1. If x(¢) is a solution of system (1) with initial function 9 at
O, defined on [-r, =) and th(cp)ll SH <H for all t in [0, ®), then
the family of functions {xt(&p), t 2 0] telongs tc a compact subset of Cj
tha: is, the motica through ¢ Dbelongs to a compact subset of C.

From this lemma,b we obtain

Lemms 2, If @ in C, 1is such that the sclution x(®) of system (1) with
initial function ©® at O is defined on [-r, ») and !Ixt(cp)" < H, <H
for t in [0, «), then Q(®) 1is a nonempty, compect, connected, invariant

get and dist(xt(Q), Q@)) -0 as t oo,

Proof: Trom Lerma 1, we know that the farlly cof functions xt(q>), vt >,

velongs to a compact subset” 8§ of C and, furthermcre, S could be chesen to
*
e “he set of ¥ in C such that ¥ < Hy, I < ¥ rfor some constant X,

. ~7 =
iz shcowe tnet D7) i3 nonempty and rounded.

\
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If ¥ belongs to Q(®), then there exists a sequence t, t o as

n s such that llx, (@) - ¥l 20 as n - =, For any integer N, there

t
n
exists a subsequence of the tn’ which we keep with the same designation, and
gorn. —NsTN
a function g (®) defined 5 such that |lx (@) - g (@) -0 as
T A tn+ T T

n »o, yniformly for T in [-N, N]. By the diagonalization process, one can

choose the t_ = so that I

'xtq + T(‘P) -GT(CP)” -0 as n —»o uniformly on all

compact subsets of (-=, ®), In particular, the sequence () defines

w é,\—wc'r:oo.

a function gT(cp) on_—(,—-an,——o)A It is easy to see that gT(QD) satisfies (1).

Xt + T
n

Since g (9) = ¥, it follows that the solution x, (¥) of (1) with initial
value ¥ at O 1is defined for all values of t in (-®, =) and, furthermore,
is in Q(®), since th . t(CP) - xt(?lf)ﬂ -0 as n —® for any fixed t.
This shows that Q(9) irsl invariant. It is clear that Q(¢@) is connected.

To show (9) is closed, suppose dfn in Q(®) approaches¥ as n -,
There exists an increasing sequence of t, = tn(’ﬂfn)—vw as n = ® such that
||xtn(¢) -%l| 20 as n 2w Given any € >0, choose n so large that
IWH - ¥ < e€/2 and th (p) - Ylfnll < ¢/2. Then th () - W <€ for n
large enough which showsnthat ¥ is in Q(9) and Srll(cp) is closed. But,
clearly Q(®) ( S and since S is compact, it follows that Q(9) is compact.

To show the last assertion of the lemma, supposé that there is an increas-
ing sequence of t —© as n-—© andan Q>0 such that ||xt () - Wz a
for all ¥ in Q(9). Since X, (p) belongs to a compact subset gf C +there
exists a subsequence which conve:ges to an element ¥ in C and thus ¥

is in Q(9). This is a contradiction of the above inequality and completes

the proof of the lemma.

Remark. In the proof of ske Lemma 2, we only used the fact that xt(t‘p) was

continuous in t, ® and that xt(w) belonged to a compact subset of C.
Therefore, the Lipschitz condition of f could have been replaced by ||®]|= Hl <K

implies |f(¢)l £ L for some L.
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Theorem 1. Let V be a continuous scalar function on CH' 1f U! designates
the region where V(®) < !, suppose there exists a nonnegative constant K such
that |@(0)| = K, V() z 0, and \'/(‘l)(cp) $ 0 for all ® in U,. If R is the set
of all points in U, where V(‘l) (9) = 0 and M is the largest invariant set in
R, then every solution of (1) with initial value in Ut approaches M as t — o,

The conditions |®(0)| = K, V(§) 2 O of this theorem can be replaced by
the condition that the region where V(@) < ! is compact, but the theorem as stated
is more convenient in the applications. Theorem 1 together with Theorem 3 below
generalize results of LaSalle for ordinary differential equations and the proofs

are natural extensions of the ones given by LaSalle.

Proof: The conditions on V imply that V(xt(w)) is a nonincreasing function of

t and V(xt(w)) is bounded below within U,. Hence $ in U, implies xt(w) in U,
and | x(®)(t)] s K for all t 2 0 which implies {]xt(tp)!l s K for all t 2 0; that
is, x,(®) is bounded and Lemma 2 implies 2(®) is an invariant set. But
V(xt(w)) has & limit f <! ast +=and V=1 on Q(p). Hence Q(9) is in
U, and ﬁ(l) = 0 on Q(9). Consequently, 2(9) invariant implies Q(®) is in
M and Lemma 2 implies xt(w) - M as t - o, completing the proof of the
theorem,
Corollary 1. If the conditions of Theorem 1 are satisfied and Q(l)(w) <0
for all @ ¢ O in U,, then every solution of (1) with initial value in v,
approaches O as t — o,

Notice that the conditions of Corollary 1 imply f(0) = O and O is in
Ulf
Theorem 2. Suppose f{(0) = O and there exists a function u(s) which is
continuous and increasing for O £ s < H with u(0) = 0. In addition, assume

there is a continuous scalar function V(9), V(0) = 0, defined on C, such that

(2) u(|e(0)]) = V(o)



(+) Vi@ 50,

for all ¢ in C Under these conditions, the solution x = 0 of 1) is

H.
stable, Furthermore, the solution x = 0 of (1) is asymptotically stable and
every solution of (1) approaches 0 as t — =, provided the initial value @

satisfies V(9) < t,t, = lim ¢(r), and the only invariant set in
r -H

V(l)(w) =0 1is O.

>

Proof. There exists a function w(s) continuous and nondecreasing for s z O
sufficiently small, w(0) = 0, and V(®) = w(|lp]|) for || sufficiently small.
For eany €, O < € <H, choose B < € so small that w®) <u(e). If @ is

in Cg, then V(Xt(¢)) nonincreasing implies
al] x(@) (1)) < V(x,(®)) < V(®) < w(B) < u(e)

for all t > 0. Therefore | x(®)(t)] <€ for all t >0 and, thus, th(w)H < €
for ¢t > 0. This shows the solution x = 0 1is stable. The second part of the
theorem is proved as follows. Since u is increasing the set U‘ of ¢ for
which V(@) < ! satisfies the conditions of Theorem .1l if £ < lo and, thus,
by Corollary 1, every solution in Ul approaches zeroc as t =, This com-
pletes the proof,

We can now deduce the following interesting corollary of Theorem 2, This
corollary is also true for nonaufonomous equations and may be found in Krasovskii

[1]. Of course, the proof for the nonautonomous case is more difficult.

Corollary 2. Suppose f(0) = 0, V(®) satisfies condition (3) and there

exists a function w(s), w(s) continuous, nonnegative and nondecreasing on

[0, H) such that

\.I(l)((p) < - w(|e(0)]).
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Then the solution x = O of (1) is stable and if w(s) <O for s £ 0O, then
it 1s asymptotically stable.
Proofs The stability follows immediately from Theorem 2, If w(s) >0 for
s # 0, then the largest invariant set in the set where Q(l) = 0 must be
those solutions of (1) for which |x(t)] = 0 for -»<t < = that is the

solution x = O. This completes the proof.

Theorem 3. Let CH =C and V be a continuous scalar function on C. 1If

v(e) 2 0, V(l)(w) £0 forall9 in C and R is the set of ¢ in C for

=0 and M 1is the larges invarlant set in R, then all bewxied
l) WM "t’O
solutions of (l)Aapproac M a8 t 5w,

which V(

If, in addition, there exists a function u(s), nonnegative and continuous

for 0 s8<w u(s) »® as s - w», such that

(5) u(|e(0)|) = V(o)

for al1 @ in C, then all solutions of (1) are bounded for all t& O.
Proofs The first part of the theorem proceeds essentially as in Theorem 1.
The boundedness property proceeds as follows., For any wo in C, there is
a constant m such that V(@) >'V(¢o) for |9(0)| z m. Since V(xt(w)) is
a nonincreasing function of t, it follows that |x(9)(t)] <m for all t z

which implies “xt(w)“ <m for allt 2 O and the theorem is proved.

Corollary 3. If f(0) = O, all of the conditions of Theorem 3 are satisfied

and V(0) = 0, v(l) <0 for @ # 0, then all solutions of (1) approach zero
as t -« and the origin is globally asymptotically stable.
We next give a theorem on instability of the solution x =0 of (1). 1In

the'stntenent of this result

(1)(“’) - HR i) - Vo)
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Theorem 4. Suppose V(®) is a continuous bounded scalar function on CH

and there exist & ¥ and an open set U in C such that the following con-

ditions are satisfied:

that uz‘og

1) V(@) >0 on U, V(p) =0 on the boundary of Uiw Cy )
i1) 0 Dbelongs to the closure of UN Crs
. '_‘L
111) V() < u(|9(0)]) on UNC A LAY, Conlivusnwa nomegeluse, oo
mmlu Lo H), wilg-. T
iv) (l)(cp) 20 on Ct(unc ) and the set R of ® in CL(UN C )
such that V(l)(¢) = 0 contains no invariant set of (1) except ® = O.
Under these conditions, the solution x = 0 of (1) is unstable and the
trajectory of each solution of (1) with initial value in U N C_ must intersect

Y
¢ in some finite time.

Y
Proof. Suppose @ e UN C. By hypothesis 1ii), |¢°(O)l 2 u-l(V(mo)) and
iii) and iv) imply that x, = xt(mo) satisfies

Ix(t)] 2 wH(v(x,)) 2 w V(o))

as long as x, € un CT. If X, leaves Uﬂ-.r,

ac of C In fact it must cross either OU or BCr, but it cannot cross

then it must cross the boundary,

‘r’

wer e, Cy W veacde C
BU since V=0 on / d V(x V(@ ) >0, t 2 0. Now, suppose that x

never reaches acy, Then x, belongs to a compact subset of CI(U N CT) for

approaches ﬂ(mo), the w-limit set of ¢, and

t

2 0. Consequently, X,
Q(wo)(: ce(un Cr). Since V(xt) is monotone nondecreasing and bounded above,
it follows that V(xt) —c, a constant, as t -, and, thus, %(l)(xt(*)) =0
for ¥ in (). Since ¥ in A(p) implies It(o)lgu‘l(v(wo)) >0, this
contradicts hypothesis (iv). Consequently, there is a value of t, such that
lx(tl)l = 7. Hypothesis 1i) implies instability since ®, can be chosen

arbitrarily close to zero. This completes the proof of the theorem.
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Remark. Condition (iv) of Theorem 4 is certainly satisfied if there exists a
continuous function w(s) 0 < s <H, increasing and positive for s >0 such

that

V(3@ > w(le(0)]).

*
(1
empty. Theorem 4 with condition (iv) replaced by this type of inequality also

In fact, the larget invariant set in U satisfylng V ) = 0 1is obviously

holds for nonautonomous systems. The reader can easily supply the proof.

3, Applications. The remainder of this paper is devoted to examples illustrating

the application of these results to specific equations.
Example 1. Suppose n =1 and
o]
£(0) = - [ a(-6)g(0(6))a0,

where g(x) 1s a real function defined for all real x, locally Lipschitzian

in x, and—there-existo—a—ocnstant—M—such-ihet

(6) G(x)lffxg(s)ds PM—for-all—x—end—6le} 2o as |x| o,
o

and a(t) is continuous together with its first and second derivatives on

{0, r]. We also suppose that
(1) a(r) = 0, a(t) z 0, &(t) =0, &(t) 20, 0s t =,

System (1) is then given by

t
(8) x(t) = -{:a(-e)g(x(t + 6))dd = - { a(t - u)g(x(u))du.

We wish to investigate along the same lines as Levin and Nohel [4] the
relations between the solutions of (8) and the second order ordinary differen-

tial equation




(9) %+ a(0)g(x) = 0.

First of all, we derlve the second order functional-differential equation
fer which all solutions of (8) must satisfy. If x 1s a solution of (&),
then it has continuous second derivatives. Differentiation of (8) and making
use of (7) yields

t
¥(t) + a(0)e(x(t)) = - [ &t - wa(x(u))au

t-r

6 t t 6
- 4(t - 6) ft g(X(u))du’ ] a(t - 8) (J e(x(u))du)as

t-r t-r t

r

t- t 9
a(r) | g(x(u))du - /  &(t - 6)(J g(x(u))du)de
t t-r t

o )
- &(r) J e(x(t + 6))ae +
-r -r

o
8(-0)( J &(x(t + u))du)as.
2]
Consequently, every solution of (8) must satisfy the equation

’ o o
(10) %2(t) + a(0)g(x(t)) = - &(r) fos(x(t + 6))ae + [ a(-e)(fsg(x(t + u))du)d€
- -r

for t > 0.

Equation (10) arises in the applications in the problem of the stability
of a circulating fuel nuclear reactor (see W. K. Ergen [§]. In this case x
represente the neutron density in the reactor. Also, the same equation arises
in some one dimensional probleme in viscoelasticity where x then represents
the strain and a the relaxation function.

Suppose y(t) 1is any continuous function defined on (-«, «). 1In the
following, we shall be interested in such functions y(t) which satisfy the
additional conditions:

o
(11 - a) if &(r)¢# 0, then [ g(y(t + 6))d6 = 0; for -w <t <=
-r
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o
(11 - b) if ‘&(s) 4 O for some s in [0, r], then [ g(y(t + 6))d6 = ©
-5

for -2 <t <,

We shall say that Q(@), the w-limit set of an orbit of (8) thru ®, is the

union of orbits of solutions of (9) which satisfy (11) if Q(®) iz the union

of sets of the form U ut(a, B), where u(a, B)(t) 1is a czclution of (9)
- oot
defined for « » < t < =, u(a, B)(0) = @, u(a, B)(0) = £ and u(0 EXt)
satisfies (11).
Notice that any solution of (9) which satisfies (11) also satisfies (10).
Not all solutions of (10) are solutions of (8). 1In fact, integration of
(10) from 0 to t yields
t o]
(12) k(t) - x(0+)= - [ a(t - w)alx(u))du + [ a(-0)g(x(u))du,
t-r -r
which is equivalent to (10). Given any initial function @ in C, one must
choose %(0+) in a special manner to obtain a solution of (8). 1In fact,
x(0+) must be such that
o
x(0+) = - [ a(-68)g(®(6))a6 .
-r
This is an additional restriction that must be satisfied by the solutions of
the second order ordinary differential equation (9).
If we define a solution of (10) to be a function which is continuous to-
gether with its first derivative, then a solution x with initial function
® at t =0 is such that x(0+) = ¢(0”) and any solution of (10) is a
sclution of the system
o
(12) x(t) = - [ a(-8)g(x(t + 8))de + C

-r

where C 1is given by
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C=¢(0) + [ a(-6)g(p(6))de
-r

and ¢ 1is the initial function for x. Therefore, any statement about the
solutions of (8) is a statement about the solutions of (10) provided the ini-
tial function satisfies conditions which ensure that C = 0. Notice that any
constant function is a solution of (10) and this is not the case for (8).
Later, we will discuss some more specific relations between (8) and (10) under

more restrictive conditions on the function g.

Theorem 5. If system (8) satisfies conditions (6) and (7), then every solu-
aa 2xplos alrove,
tion of (8) is bounded and the w-1imit set of any solution of (8) is the union, ,

of orbits of solutions of (9) which satisfy (11).

Proof: We use the same Lyapunov functional introduced by Levin and Nohel [4¢].

1f M e Uhe i o Gelx) dginnd. o () amd

1,° ° 2
v(e) = 6(e(0)) - 5/ é(-9>[feg(¢(s))ds] a® - M,
-r
then
V(@) = & a(e)[/ &(@(6))a01? - L [ 5(-0)(/ &o(s))as)as 5 0
(8)¢—§ar _rgq) -2-1‘&- eq) 2

by the hypothesis (7). The hypotheses also imply that the conditions of
Theorem 3 are satisfied and, thus, every solution of (8) is bounded and must

approach the largest invariant set of (8) in the set where V = 0. It

(8)
is clear that this latter set R consists of all those ¢ in C for which

o
I e(o(8))as
-r

0 if a(r) #0

(14)

o
I g(®(8))ad = 0 for any s in [0, r] for which &(s) £ O.

-8
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But all solutions of (8) satisfy (10) and any solution in an w-1imit set
must be defined on (-», ») and satisfy (14) for all t in (-», =),
Finally this implies these solutions must satisfy (9) amd (11), completing
the proof of the theorem.

Two questions now present themselves in a natural manner: i) What
are the possible solutions of (9) which satisfy (11)? What additional con-
ditions on a(t) and g(x) will ensure that Q(®) is generated by only one
solution of (9)? We now give some partial results in an attempt to answer

these questions.

Corollary 4. If system (8) satisfies conditions (6) and (7) and there is an

s in [0, r] such that a(s) >0, then (8) has no nonconstant periodic

solutions.

Proof: There exist s < s, suchthat &(s) >0 for s, 5858 If

1 1°
(8) has a periodic solution xt(w) then 0(9) = fot(w)’ and Theorem 5 states

that 1t must be generated by a nonconstant periodic solution u(t).of least

period p of (9) satisfying (11 - b) for s, <s<s But integration of

l'
(9) yields

a(t) - 2(t - 8) = -a(0) Iog(u(t + 6))d6 = o,
-8

which implies u(t) is periodic of period s for s, <s8<s But this is

1°
impossible since u(t) is periodic of period p. This proves the corollary.

Corollary 5. If system (8) satisfies conditions (6), (7), xg(x) >0 for

x4 O and there is an s in [0, r] such that &(s) > 0, then the solution

x = 0 of (8) is globally asymptotically stable.

Proof: The condition &(s) >0 for some s implies a(0) >0 and this to-

gether with the conditions on g(x) imply that every solution of (9) is
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periodic and the only constant solution is zero. Theorem . and Corollary 2
imply the conclusions of the theoren.

Corollary 5 is essentially the same as the one of Levin and Nohel [4].

Corollary 5 is a statement of global asymptotic stability of the solu-
tion x = 0 of (8). Can we use this result to draw any conclusions about the
solutions of (10)? Any constant function satisfies (10) and one would suspect
that any solution of (10) approaches a constant as t # =, This seems rather
difficult to prove in the general case, but we can prove the following simple

result fram Corollary 5. If for any real constant b, there exists a real

5 such that

h(y) = gy +8) - b

satisfies the condition

yh(y) >0

where g(y) satisfies the conditions of corollary 4, then for a given solution

x of (10), there is a constant & such that x +a as t - », In fact, if

the solutions of (10) are required to have continuous first derivatives as stated
in the remarks preceding Theorem 5, then the system (10) is equivalent to the

system

1 a(-0)lelx(t + 0)) - ¢/7 Ja6
-Y

x(t)

o) S o)
C=09(07) + ] a(-8)gl®(8), r= [ a(-6)as
-7 . -
and @ 1is the initial value of the solution x under investigation., If we
let b=c/8, 5 be defined as above and x =y + &, then y satisfies (8)
with some appropriate initial values and approaches zerc by Corollary 5. Thus,

we'have proved the above result.
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There are many functions g(x) which will be such that h(y) satisfies
the above conditions. 1In fact, if xg(x) >0 for x4 0, |g(x)] 2= with
|x|, &’(x) >0 for all x, then this is true. In particular, the functions
g(x) = e -1, g(x) = x, etc. satisfy these conditions.

Now, let us consider a more particular case and investigate the possilLle

w limit sets of (8). Let a(0) = 1 and
(15) g(x):-x+x5.

Suppose there are S, < 8 such that 3&(s) >0, 5, £ s s Sqe The conditions
of Theorem 5 and Corollary 4 are satisfied and the w-1limit set of any solu-

tion of (8) with g(x) given by (15) must satisfy

'J'(-x+x3=0
(16)

(o]
[ g(x(t +6))a® =0 for all s in [s,, &
-8

13

The phase portrait of the solutions of (16) is easily shown to be as in Fig. 1.

By Corollary 4, the only possible candidates for an Q(p) of (8) are shown

in Fig. 2. Now the curves C,s C, are determined by solutions ul(t) > 0,

u2(t) <0, -»<t < ® respectively. But there is a T such that 0 < ul(t) <1,
-1< u2(t) <0, for t2 T and, thus, for any s £ O

fo g(u (t + 6))ase <o, fo g(u(t + 6))a6 >0 for tzT.
-8 -8

This shows that ul(t), ue(t) cannot have orbits which belong to an Q(9).
Consequently, the w-limit set of any solution of (8) with g satisfying (15)
must be one of the three constant functions -1, 0, 1.

For this same particulsr example let us analyze the stability properties

cf each of the constant solutions -1, 0, 1. If a is either of these solutions,
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the linear variational equations relative to «a are

t
(17) §(t) = = [ a(t = 1)(-1 + 367)y(7)ar .

t-r
If the solution y = O 1is asymptotically stable or unstable then it follows
from results of stability theory that -the same 1s true for the complete
variational equations. For «a =+ 1, Corollary 5 implies the solution
Yy =0 of (17) is asymptotically stable and using the negative of the V-func-
tional employed in the proof of Theorem 5 and applying Theorem 4, one finds
that for a = 0, the solution y =0 of (17) is unstable. Consequently, any
nonconstant solution of (8) with g satisfying (15) approaches either +1 or
-1 as t —o®,

It should be clear the particular form g(x) given in (15) is not at all
essential for the above type of results and one could have a function g(x)
with many zeros on the axis.

If ‘d(s) = 0 for all s then the behavior of solutions of (8) may be
more complicated. The following result indicating this fact is due to Levin

and Nohel [4]. The proof of the theorem is essentially the same as in [4].

Theorem 6. If system (8) satisfies (6), (7), and a(s) = (r - s)/r, 0 £ ssr,
xg(x) >0 for x # 0, then every solution of (8) is bounded and the wm-limit
set of any solution of (8) consists of the orbit of some solution u(t) of (9)

which satisfies the condition

)
(18) [ glu(t +6))ad =0, -»m<t <o,
-r
In this case, u(t) must be periodic of some period p and there must be an
integer m such that mp=r. If U+ g(u) =0 and mp =r then u satisfies
(8).
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Remark. If the only solution of (9) which satisfies (18) is the solution
x(t) = 0 for all t, the zero solution of (8) is globally asymptotically
stable. In particular, this is true if g(x) = aex, 62 >0, and r £0
(mod 2n/o). If r =0 (mod 2r/o) and g(x) = czx, then every periodic solu-
tion of (9) is a periodic solution of (8). Also, it will be clear from the
proof that g(0) = 0 and (6) implies the zero solution of (8) is uniformly

stable.

Proof of Theorem 6. From Theorem 5, O(®) must be the union of orbits of

solutions of (9) which satisfy (18) since %(s) = 0 for all s. All solutions
of (9) are periodic and it is easy to see that (18) implies the periods must
satisfy the property stated in the theorem. We now analyze the detailed struc-
ture of Q(9). Let Q(9p) be the w-limit set of an element ® in C obtained
by moving along trajectories of (8). Choose V as the function used in the
proof of Theorem 5 except with M = 0. Since Q(p) is invariant, V(xt(#))
is constant for ¥dl(9), » < t < », Taerefore, V(xt(¢)) =0 for ¥ € Q(9)
if and only if Q(®) = {0}. Now suppose O & 2(9). Then v(xt(t)) =v >0
for ¥ € Q(9), - <t < ®, Furthermore, Q(p) consists of periodic solutions
(9) which satisfy (18) and the only periodic solutions of (9) which satisfy (18)
must have a period p(@) such that m(Q)p(Q) = r for some integer m(Q).
On the other hand, since Q(®) is connected and p(Q@) is continuous, this
implies all solutions of (9) which lie in Q(®) must have the same period;
that is, mp=r, m and p independent of «

Now let u(t, @), u(0, @) = -a<0, 4(0, @ =0, 0< o sasa
be those periodic solutions of (9) which lie in Q(9), 0 ¢ 9(9). Then each
u(t, o), 01 = Qs a, has the same period p with mp = r for some integer

m and v(ut(a))=v>o, Qs asa,,

-0 <t <w, If we show that Q = ay
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this will complete the proof of the theorem. Using the fact that

u(t, a) = -g(u(t, @)), we see that

V(ut(or)) = G(u(t, a)) + % ﬁe(t, a) + %; {: &2(t + 1, a)dT .
Since

s(u(t, @) + 3 t2(t, @) = G(-a)

for all t, this implies

Vi ( 1 /°.2
u, a)) = 6(-a) + = [ (¢t + 1, @)dT
-r
= G(-a) + %5 fo ﬁ?(r, a)dr.
-P

The latter relation follows because U is periodic of period p = r/m. Further-

more, from the symmetry of the curves defined by u(t, @), u(t, a) in the u,h

plane, it follows that

o
V(uy(a)) = 6(-a) + 35/ [6(-0) - o(u(1, a))lax

p
g(a)

- G(-a) +’£—2— [G(-a) - G(§),éd§
-

where PB(a) >0 is defined as the unique positive number such that G(-a) = G(B(a)).
From the properties of g, it follows that V(ut(a)) is a strictly increasing

function of a and this is a contradiction unless al = Q.

To prove the last assertion of the theorem, note that

t t
-{ £'_%t_:_“l g(x(u))du = { L-(t-weau- a(t)
-T -r
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from an integration by parts and the periodicity. This completes the proof
of Theorem 6.

Can we use this result to draw some conclusions about system (10)? Let

us suppose g(x) 1is such that |g(x)] -~ with |x| and for any real con-

stant b there is a & such that
def
n(y) = ely+8)-b

satisfies yh(y) >0 for y # O, then using the same argument as that after
o

Corollary 4, the transformation x= y +8& where g(8) = C/r, v=/ a(6)ds,
-r

c = 9(0) + fo a{-8)y(6)d8, yields the equation
-r
o
y(t) = -J_ a(-8)n(y(t + 6))as.

The function h satisfies the conditions of Theorem 6 and therefore, the

w-1imit set of any solution consists of an orbit of
y+ny)=o0

generated by a periodic solution of period p with mp = r for some integer
m. Therefore, every solution of (10) is asymptotic to a constant piﬁs a
periodic solution for large values of +t,.

Using the same V functional as in the proof of Theorem 5 and assuming
that g(x), a(t) sgtisfy the conditions (6), (7), and in addition F(x) is
any continuous function of x which is locally Lipschitzian in x, and

satisfies
g(x)F(x) >0 for x#£ 0, F(O) =0, g(0)=0,

one shows that the zero solution of the equation

t
x(t) = F(x(t)) - [ a(t - 1)g(x(u))du

t-r
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is globally asymptotically stable.

Example 2, (Volterra, [6].) Consider the equation
r

(19) AR(t) + Bx(t) = fo F(8)x(t - 8)d6

where A, B, F are symmetric matrices, F 1is continuously differentiable and
. of r

(20) A>0, F(8) 20, F(8) s0, 05 6sr, ME'B - [_F(8)ds >o.

With M defined as above and %(t) = y(t), we can rewrite (19) as

(21) x(t) = y(t)

Ay(t) = - Mx(t) + fr F(e)Ix(t - 8) - x(t)] ae
(o]

System (2§) is more general than (19) and for (21) to be equivalent to (19)
the initial conditions for (21) must be chosen in a special manner. However,
we are going to discuss the more general system (21). Following Volterra [6],

we define V(p, ¥) as
(22) V(o,¥) = % @1 (0)Mp(0) + % ¥' (0)A¥(0) + %’fz[¢(-9)-¢(0)]'F(e)[Q(-e)-w(O)]de-
Then

. r

Vo) (Fpo¥) = ¥ (DM(0)-3 (M(6) + 3 (0] F(O)[x(t-0)-x(t) a8

d 1 v 1
+ —'E E { [X(U)-x(t)] F(t-u)[X(u)—X(t)]du
-r

o

T
= ¥ (£)] F(O)[x(t-0)-x(t)1d0 - 3 [x(t-r) - x(t)]F(r)[x(t-r) - x(t)]
o
l t . t
+ 5 [x(w)-x(£)1F(t-u) [x(u)-x(t)Jdu - [ y' (£)F(t-u)[x(u)-x(t)]du

t-r t-r

o - Hx(ter)-x(8)]' F()Ix(6r)-x(8)] + & [ [x(t-8)-x(£)]" F(6)[x(-8)-x(t)]a0
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Consequently,
(25) V(21)@:¥) = - F(-1)(0)]" F(2)[0(-r)-0(0)]

r .
+ 3 [ 19(-6)=0(0)1" F(o)[0(-6,-¥(0)1a6 8 O.
(o]

Theorem 7. (Volterra [6]). If A >0, M>O0, F(6) >0, and there isa 6_
in [0, r] such that F(60)<< 0, then every solution of (21) approaches zero

as t — o,

Remark. This theorem is actually a generalization of the result of Volterra,
since he assumed F(r) = O, %(9) <0 for all 6 in [0, r] and only showed
that all solutions of (21) were bounded and there were no constant or periodic
solutions. Of course, these conclusions are enough to imply that all solutions

approach zerc as t — o,

such that F{8) <0

Proof of Theorem 7. Since F(Bo) <0, there exist 61 <8,

for 9l s6s86 Furthermore, from (23), V(21)(¢’ ¥) = 0 implies @(-6) = 9(0)

2.
for all 6 for which F(6) < 0; in particular, for 6, £ 08 =6, Fora solu-
of (21) to belong to the largest invariant set in the set where

tion Xer Yy

V=0, we must have x(t - 6) = x(t) for all ¢t in (-, =) and 6, 5656,

Consequently x,

turn implies Mx(t) = 0 and M >0 implies x(t) = 0 for all t. Thus, the

must be a constant function which implies v = 0, which in

largest invariant set of (21) in the set where %(21)(¢’ ¥) =0 1is (0, 0).
Since V satisfies the conditions of Theorem 2, the origln is asymptotically

stable. This completes the proof of the theorem.

Theorem 8. If A>0, M>0, F(6) =0, F>0, 0<6<r, then all sclu-

tions of (21) are bounded and the w-limit set of any solution of (21) must be
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generated by periodic solutions of period r of the system

X = Yy
(24)
AS' = -Bx .

Proof: Using relation (23) for V(El) we see that the set where V = O
consists precisely of those initial functions for which @(-r) = ®(0). Con-
sequentiy for a solution to belong to the set where % = 0 it must be periodic
of period r. But any nontrivial periodic solution of & linear equation with
constant coefficients has zero average over the period and it follows that the
largest invariant set in the set where % = 0 must be periodic solutions of
period r which satisfy (24). The conditions of Theorem 2 are satisfied and
the theorem is proved.

In the case where x 1s a scalar, it is easy to show that the g-limit
set of any solution of (21) satisfying the conditions of Theorem 8 is generated

by at most one solution of (24).

We now prove the following instability theorem for the case where M < 0.

b
Theorem 9, If A>0, M<O0, F (8) >0, 0<6<r, F(0) <0, 0<6<r,
and there is a 90 in [0, r] such that F(Go) < 0, then the solution x = 0,

y = 0 of (21) is unstable.

* %
Proofs If V is chosen as in (22), then V(21)

argument as given in the proof of Theorem 7 shows that the largest invariant

satisfies (23)., The same

*

set of (21) in the set where V(21

) = 0 is (0, 0). Furthermore, V(p, ¥ <O

if and only if

r
Z¥(0)A¥0) + 3 [ [0(-0) - 9(0)]' F(O)[9(-8) - 9(0)1d0 < - 3¢'(0)Mp(0)
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The set U of ©,¥ satisfying this relation is ccrtainly open ard O belonw:
f L fj«o tAw ’.t,d‘(\n_ - v
to the boundary of U. The conditions of Thecrem 4 are uatisfieiAand any sci.-

tion of (21) with initial values (¢, ¥) £ (0, O))(w, ¥ in U must approacr

infinity, completing the prouf of the theoremn.

Example 7. (Interaction of species, Volterra [7]). in [7], Vciterra has iis-
cussed the following model for the interaction of two species. Let Nl(t), Wg(t}
be the numters of species ci type A, B respectively, at time t. O3pecies A
has an unlimited food supply and species B relies upon A for his develcopment.
For positive constants r, ej, 75, J =1, 2, and nonregative furctions

Fl(e), FE(Q)’ 0<#8 < r, the species are assumed to evolive according to

thie relations

. r

Nl(t) = [e; - rlng(t) - foFl(e)N2(t - 9\»]N1(t),
(25)

. r

Ng(t) = [-e2 + rENl(t) + [ F2(6)Nl(t - 9)]N2(t).

o)
In the classical model of the interaction of A and B, the functions Fl,

F,, are zero. The additional terms involving Fl(G), F2(8) allow for mcre

interacticn between the species A and B. For the simple model it is well

known that all solutions of (25) with Nl >0, N; > 0 are pericdic and cnoircie

an equilibrium peint in the (Nl, N;) - plane. As we will see below, the mrre
general system (25) has an asymntotically stable equilibrium point under very

general assumptions on F F

e

The equilibrium pcints of (25) are (0, 0) ard (Kl’ K,), Ky = eAy. + I
\ r . . ; . . i . 3
K, = el/(ri + Fl), Pj = fp Pj(e)dé, J =1, 2. The point (0, 0) is ~bvi usly
unstable., We wish now to analyze the behavior of the solutions of (75} in a

neighborhood of the equilibrium point (Kl, KQ). If we let N, = Kl(l + x),

N2 = K2 (1 +y), then we obtain the linear variational equations



25

%(t) = - py(t) - [ CO)[y(t - 8) - y(t)]a6
(o]

(26)

r
¥(t) = ax(t) + [ F(8)[x(t - 6) - x(t)1de
(o]

r r
where p = 1K, + foc;(e)de, q= rle + fo F(6)a6, G=K;F, >0, F=KF,>0,
and we make the assumption that p >0, q > 0. If we can show that system (26)
is asymptctically stable, then the equilibrium point (Kl’ K2) of (25) is
asymptotically stable. Notice that (26) 1is a generalization of the scalar

version of (21). 1In fact, we obtain (21) by putting G = O and replacing y

by -y.

Theorem 0. If p>0, gq>0, F (8) >0, G(8) >0, F(6) <0, G(6) <O,
0<6<r, and there isa 6_  in [0, r] such that either F(Go) <0 or

é(eo) < 0, then every solution of (26) approaches zero as t —» =,
Proof: Define

r
Vix,, v,) = 30 ¥ (t) + gax (t) + 5/ G(0)[y(t - ) - y(t)1%ae
o

r
+ 3 ROt - 8) - x(t)]%ae.
[o]

It follows that
. r

‘ 1 - 2
v(26)(xt, v) =3 f0 G (8)[y(t - 8) - ¥(t)]"d6

r -
+ 3/ FO)x(t - 0) - x(t)1%0 < 0.
)
Therefore all solutions of (26) are bounded. If there is a 6, in [o, 1]

t
V=0 must satisfy x(t - 8) - x(t) = 0 for 8 1in an interval containing 8,

such that F(Go) < 0, then x, 1in the largest invariant set in the set where

Consequgntly, x = ¢ a constant and the differential equation implies x =0, ¥

0.
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Therefore, Theorem 2 implies every solution approaches zerov as t —» =, The
other case is treated in exactly the same manner and the theorem is proved.
One could obviously generalize this example to a system of equations of

a special type.

Example 4. Let us consider a special nonlinear version of equation (19);

nemely, the second order system

%(t) = y(t)

(27) N
- h(x (t)) + /] F(o)alx(t - 8) - x(t)]ae
(e}

¥(t)

where h(x), g(x) are continuous functions of x such that xh(x) >0,

xg(x) >0 if x £ 0 and

H(x)qu th(s)ds »o as |x| -,

(e}

If G(x) =~fxg(s)ds and
)

1 h
V(p, ¥) = §-¢2(O) + H(®(0)) + [ F(8)G[o(-8) - ®(0)]ae,
o
one easily obtains
. .
Vier) (xer ¥y) = - F()GIx(t - 1) - x(2)] + J, FOOICTx(x - 9) - xTnitad.

If we suppose F(6) >0 for all 6 and there is a 6, such that %(90) <o,
then, as in the previous example 2, one shows that every solution of (27) ap-
pfoaches zero as t oo, If f(e) =0, 0<6<r and F(r) >0, then every
solution of (27) is bounded and the w-1limit set of any solution of (27) must

consist of periodic solutions of

(28)
' -h(x)

e
]
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of period r. If there are no periodic solutions of (28) of period r except

the solution (0, 0), then every solution of (27) approaches zero.
Example 3. (Krasovskii, [1, p. 173]) Consider the equation

x(t)

y(t)
(29)

(o]
-£(y(t)) - elx(t)) + [ n(x(t + 6))y(t + 6)as
-

~~
ct

S—
"

¥

where
£f(x)/x >b >0, gx)/x>a>0, |n(x)| <L, r<b/L,

for all x. If h(x) = dg(x)/dx, system (29) 1is related to a second order

differential-difference equation. For any scalar functions ¢,¥ defined and

continuous on [-r, 0], define
o o
V@, ¥) = 26(9(0)) + ¥(0) + v (J ¥(0)av)as
: -r

x
where G(x) = [ g(s)ds and v 1is a positive constant to be determined.
o
A direct computation shows that

Tia)® ¥ = - {:“f—b - VIF(0) - 21/ ¥(0)¥(8)| + v (6)]as

If r < b/L, then one can always find a positive v for which the integrand
is positive definite in %(0), ¥(8) which implies %(29)(¢’ ¥) =0 if and
only if ¥ = O, But, the only invariant set cf (29) which lies in the set of
(p, ¥) for which ¥ =0 is (0, 0). Consequently, the above theorems may be
applied to obtain the results that the solution x=0, y =0 of (29) is
asymptotically stable and if, in addition G(x) - as |x] - ®, this solu-

tion is globally asymptotically stable.,
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Example 6, Consider equation (29) with
-f(x)/x >b >0, gx)/x>a>0, |h(x)] <L, r< b/L,
and let
¢ 0
V(®, ¥) = 26(0(0)) + ¥(0) - v [ (J ¥(6)a0)ar
-T . T

x

where G(x) = [/ g(s)ds and v 1s a positive constant to be determined.
o .

A direct computation shows that

. 0 .
VZ29)(¢’ neJ [(%2 -v)¥(0) - 21/ ¥(0)| - |#(8)| + v ¥ (8)1a0
-r
0
for some convenient v >0 (and in fact, any v < 2—:) if r <b/L and

* ¥

V(eg)(¢’ ¥) =0 if and only if ¥ = 0. But, the only invariant set of (29)
for which ¥ =0 18 @ = 0. Since V satisfies the conditions of Theorem
4 , the origin i1s unstable.

As a special case of this example, let us consider the Rayliegh equation
with nehar )

R(t) - e(1 - ) x(t) + x(t - r) =0, €>0,
whicd for h=0, tam be trarsformed wdo the wll banon m@?ol%w,
W%mlr-\% w tonndeond aa 4,0*741'«/’

x(t) = y(t)

ig(t

(30) o o
(t) = e [1 - Lé'ﬂ]:f(t) - x(t) + [ y(t + 8)as,

r
thea )
Aﬂompa.rison with (29) yields

2
-£(y) = e (1- Ly

g(x) = x, h(x) =1.
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2 2
Forany v, 0<7r<l if y <7y < 3, then -f(y)y > e (1- 72) > 0.
Consequently, from Theorem 4 and the ccmputa.tion in the above example, it
follows that the solution x = O of (30) is unstable if r < e (1 - rz).

The region U where V >0 consists of all @, ¥ for which

0 0
2
92(0) + ¥(0) > v | (/ ¥(8)as)ar

-r -7t

where Vv > (0 can be chosen as small as we like with the only restriction
2

on v being that v < € (1 - v )/r. Theorem 4 implies that any solution
of (30) with initial function @e U ”CJBr must reach the boundary of C J}T
in a finite time. If r = 0 this is the same result as one obtains for
ordinary differential equations; namely, if equation (30) has a cycle it must
be outside the set UN CJ—BT if r<e (1- ’(2) This type of result states

that the properties of the type mentioned above are continuous in r.
Example 7. (Krasovekii 1, p. 1 0 ). Consider the scalar equation
(31) x(t) = - ax(t) - bx(t - r)

where a >0, b are constants. If x 1is a scalar take le as the

absolute value of x, If

0
vip) = %@2(0) +/l{r({)2(9)d9
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where u >0 1is to be determined, then

6(31)('t) = - ax2(t) - bx(t)x(t - 1) + (L) - ux(t - 1)
and 6(31)(xt) is a negative definite quadratic function of x(t), x(t - r)

if
> (a - wu >b°

~., Consequently, if u = a/2 and b2 < a2, then the conditions of Corollary 2
are satisfied and the solution x =0 of (31) is globally asymptotically stable
(the global nature follows from the linearity).

In the above discussion of (31), the particular Lyapunov function used
ylelded a stability regioh which is independent of r and the sign of b. The
exact region of stability for (31) is easily computed (see Bellman and Cooke

[8]) and is indicated in Fig. 3.

N b A ..
\\\\f?,g;l’ \\
: ‘ Stability Region
<R
L o)
/
/ b+a=0."

Fig. 3.

The region ]b|,< a is the maximum region for which stability is assured for
all values of r, O s r £ ®, On the other hand, as r -0 the true region

of stability for (6.1) approaches the half-plane b + a > 0.
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Fig. 3
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We ask the following question; 1s it possible to use a Lyapunov function
to obtain a regicvn of stablility which depends upon r and hes the same guali-
tative structure as the true region of stebility? In particular, can we use J
a Lyapunov function to obtain a region of stability which approaches the half-
plane b+ a >0 as r =0 7

We proceed as follows. Let a be a constant and £(8) be a continuously

differentiable function of 6 for -r 6 = ¢, If

2 t t
(32) V(xt) = f—éﬁl +ax(t) /  z(Wau+ [ Blu - t)x2(u)du
t-r t-r

then

K| x(t)l2 s V(x,) s Kﬂxtn,
if

2
(33) (o) >5E, -rseso.
Furthermore,
t
y - a - 8(0) 2., 1 /
Yot - 'ft-r[EL-"'“?T'“‘l“ (67 + Fa+ D)x(t)x(s - 1)

+ Eé:il xe(t - 1) + aax(t)x(u)

abx(t - r)x(u) + Blu - )x°(u)]du.

+

Consequently, if B satisfies (33) and the integrand is positive definite

in x(t), x(t -r) and x(u), then Corollary 2 will imply the uniform asymp-
totic stability of the solution x =0 of (31)., The necessary and sufficient
conditions for the integrand to be positive definite in these variables is that

a, B, a, b and ¢ satisfy the following set of inequalities:
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&t 4. 80) >0

(34) ap(-r) -1 @+ )50

qu

W P
n

2
Azé(e) - 9"—"--[1>2Al - bla+ b) +B(-r)] >0

If we assume that Ai >0, Aé > 0 then the previous inequalities will

be satisfied if

Aldgfa-a-ﬁ(o)>o
(35) A, d.—(i-f AlB(-r) - %(a + b)2 >0
a+ b , -rs650

a3(8) > Al(bAl

Consequently, if for given a, b and r we can choose a and B(8) so
that relatioms (33) and (35) are satisfied, then the point (a,b,r) will
correspond to a set of the parameters for which (31) is asymptotically stable.
Let us check first of all to see whether we can obtain the same results
as before for the region of stability which is independent of r. For a = 0,
inequalities (33) and (35) do not depend on r explicitly and reduce to
B(8) >0, B(8) >0, -rs6 50, a>86(0), % < 4(a - B(0))B(-r). Suppose
there is a constant q <1 such that b2 < qaz, a > 0. Then we can satisfy
the inequalities if we choose PB(6) close enough to a/2, which yilelds the
same result as before,
We now make some rather crude estimates of a, B to obtain some informa-

tion about that part of the stability region which depends on r and is con-

tained in the region a + b > 0. In particular, we want to see if it is possible

to obtain the region of stability as the region a + b >0 if r - 0. If we

let @ =-1b . 28(-r) [this maximizes Aé], then our inequalities (33), (35)
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will be satisfied if
a + b >B(0)

2
i) > r (b:;l:('r)) (bs, + B(-1))?

(36)
B(6) >x(28(-r) + of, -r s 650,

Al =a+b - (B(O) - B(-I‘)), Az =f[a+b - B(O)]B('r)'

We see from these inequalities that as r —+0, the region defined
by (36) with B(8) sufficiently small approaches the region a + b >0,
which coincides with the true stability region. It would be interesting to
investigate how well the stability retion of (31) can be approximated by a

clever choice of the constant a and the function B in (32).

Example B. Consider again the equation
x(t) = -ax(t) -bx(t -~ r),

where a + b <0 and r is any positive constant. We wish to prove by use
of Lyapunov functions that the solution x = O of this equation is unstable,
The exact region of stability for this equation is shown in Fig. 5. The region
a+ b <O is the interior of the intersections ©f the instability regions as
a function of r.
If F 1is any given function and
V(x,) = SON %f: Tt - w)x(w) - x(t)1%au,

then it is easily seen that
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Q“(xt) = Q(xt) = - (a+ b)xe(t) - b[x(t - r) - x(t)] x(t)
t

s LRt - 1) - (012 - 2 Rt - wix(u) - x(£)]%u
3 3 tor

t

+ [ F(t - w)[x(u) - x(t)){-(a + b)x(t) - b[x(t-r)-x(t)}]ldu.
t-r

If the expression for V is written as an integral from [t - r, t], then

the integrand will be a positive definite quadratic form in x(t), [x(t-r)-x{t)],

[x(u) - x(t)] if the following inequalities are satisfied:

a+b <O

2
8,987 - (a+ V)F(r) - 3= >0

2
Abdéf - Azi«‘(e) - (—a%}—’u Fo(6)F(r) >0, 0568 S r.

If a+b<0, it is clear that these inequalities can be satisfied by a
continuously differentiable positive function F(8), O £ 6 s r. Consequently,

there exists a positive number ¢ such that
- 5 2
vV (9) 2 a9 (0), V(®) = 9 (0)/2,

0
for a11 @ in C. If U= (9 in C: ¢2 (0) > [ F(8)[o(8) - w(o)]zde}
-r

then U satisfies i) and 1i) of Theorem 4 and the remark after Theorem 4

implies the solution x = O 1is unstable.

Example 9. Consider the equation
%(t) = a0(t) + bO(t - )

with a >0, |b] <98, 0< g <1 arbitrary. For



e ~ 25
4 0 4
Vo) - 2L 2 I 9%(6)a0 = 2 {0)

r

we have
v(9)= V(o) = %@6(0) + §m5(o)w5(-r) + %wé\-r)
2 5 (1 - )°%0) +9%-r))
23 (1 - 99°(0)

0
and if U = {9e C: W‘(O) >2a [ tp6(9)d9}, then the same argument as
-r

before shows that x = O is an unstable solution of this equation,

If a<0, |b<qal, one can choose
4 0

ve) = 20 4 1 1 o5(e)ae
-r

and use Corolla.:;y 2 to prove the zero solution is stable.

Notice that the game V functionals may be used to show that the zero
solution of x(t) = u’(t) + bx‘(t = r) is stable or unstable according as
a<0 or >0, regardless of the slze of b. One simply must operate in a

surficientlyAneighborhood of the origin.
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L.  Extensions of the theory to the case of infinite lag. In this section,

we extend the theory developed in section 2 to the case of infinite lag; that
is r = 4+ . The-appiientiomef This theoryffgai beAvuiéd to all of the
examples of section 3 for which results were obtained independently of r.
This extension will be clear once an w-1limit set is defined and it is known
that an w-limit set 1is an invariant set. The compact open topology on the
space of continuous functions is employed in this extension and resulted from
a conversation with J.P. LaSalle.

Suppose r is a given real number which we allow to be +«, For any
real number ¢, the symbol [0 - r, o] denotes the closed interval o-rstso
if r 1is finite and the half open interval - <t £ 0 when r = +®, Let
C=¢c([-r, 0], E") be the space of all continuous functions mapping the inter-
val [-r, 0] into E'. The topology on C 1is taken as the compact open topo-
logy which, in this case, is equivalent to uniform convergence on all compact

subsets of [-r, 0]. If r 1is finite, then C 1is a Banach space with the

norm of an element @ of C given by

def o)l .
ol = ol _ sup |o(6)

[-r, O -rs0s0

If r=+w, then C 1s not a Banach space, but ‘a complete metric space

with a metric p that can be defined as

’*=E ’
o(®, ¥) -~ me

N
m, = min(2", "q’-‘“[-(ml), -N])

Notice that this metric has the important property that
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(37) Il _(gsn), yy % P® 0), F=0,1,2, ...

One can show that a sequence ¢ —¢ [that is, p(@n, P) 0 as n = =] {if
and only if for every nonnegative integer N, H@n - *"[-N, 0] *0 18 now
For more details on this space of functions, see Arens [9], Bourbaki [10},
Kelley [11].

If H 1is a positive constant, we use the notation CH to denote the
set {® 1in C: o(®, 0) < H); that is, the open "ball" in C with center
at 0 and radius H,

If o 1s any real number and X 1s any continuous function with domain
[0 - r, ») and range in En, we let Xy s t £ 0, denote the restriction of
x to the interval [t - r, t]; that is, x, Dbelongs to C.

t

If f£(¢) 4is a function defined for every ¢ in C, and k(t) 1is the
right hand derivative of x(t), we consider the following autonomous functional

differential equation:

(38) x(t) = £(x,).
A solution is defined the same way as for the case of finite lag. Relation
(37) allows one to prove the following existence and uniqueness theorem:

If f(9) is continuous in C then for any @ in CH’ there is a solution

H’
of (1) with initial condition @ at t=0. If f(9) 1is locally Lipschitzian

in @; that is, for any H

1 < H, +there exists an LH such that
1

| £(9) - £(¥)i s Lye(o, ¥),

then there is only one solution with initial condition ¢ at ¢ = 0 and the

solution x(9) depends continuously upon ¢. Also, f(@) locally Lipschitzian
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in @ implies the solutions can be extended in C wuntil the boundary of CH
is reached.

Stability and asymptotic stability are defined the same way as for the
finite lag, except use is made of the metric p. Relstion (37) implies that
the definitions made in this manner yield the desired properties.

In the remainder of the discussion we assume f(®) is continuous and
locally Lipschitzian in C and the solution x(@) of (38) with initial
conédition @ at t = d is defined on [-r, ®»). An element ¥ of C 1is

in Q(p), the a-limit set of @, if there is a sequence of nonnegative

real numbers t , t == as n —®, such that p(xt (), ¥) 20 as n oo,
n

A set M 1is said to be invariant if for any ¥ in M and for any o in

n

(-», 0], the solution xt(a, to) of (38) with initial value vV, at t=o0
is defined for t z o, xt(o, va) belongs to M for t z o and xo(o, wc) = V.

Notice that all solutions of (38) on an invariant set must be defined on (-», =),

Lemma 3. If @ in Cy is such that the solution x = x(@) of system (38)
with initial function @ at t =0 1is defined on [-r, =)  and D(xt,0)§Hl<H
for t in [0, =), then Q(9) 1is a nonempty, compact, connected, invariant
set and p(xt, 2(P)) 20 as t =,

Proof: Iif p(xt, 0) =K, tz0, then there exists a constant M such
that |x(t)] = K, |x(t)] s M for all t 2 0. For ;ny nonnegative integer N,
let GN = [-N, 0]N[-r, 0]. The restriction of x to the interval [t-N, t],

t 2 0, belong to a compact subset of C(&, EY). In Cl &y EY), we let |9
maxl@(e)[‘

6 in &N

exists a sequence tn = tn(N), tn —+® gs n o and a function ¥ in C(&N,En)

Y

denote the norm which is given by HQHEN = Consequently, there

such thaet |lx_ - tﬂaN -0 as n —®, Application of the diagonalization pro-

t
n

cedure yields a sequence 5 independent of N, and a function ¥ in

c([-r, 0], E') such that
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“xsn“ v"au"o a

8 n -» oo

for all integers N =0, 1, 2, ... . This proves Q(9) 1is nonempty.

Q(®) is obviously bounded. To show Q(®) is closed, suppose v, in
() and *n 4% as n —+», There exists a sequence of real numbers tn,
which can be chosen independent of *n by the diagonalization procedure, such

that for any € > 0, there is an integer N, = No(e) such that
D(xtn(‘P); *n) < /2, o(v, *n) <e¢2, nz n_.

Therefore, p(xt (p), ¥) < e for n 2 N_ which shows that ¥ ie in Qo).
To show n(cpr)1 is compact, suppose ¥, in a9, n=1,2, ... . It
follows from the first part of the proof of the lemma, that *n restricted to
[-N, 0)A[-r, 0] belongs to a compact subset of C(&N, En) Consequently, one

applies the diagonalization procedure to show the existence of a ¥ in
c([-r, 0], E') and a subseguence n #> as k-2« such that p(#n , ¥) 20
as k o, §

To show (9) 1is invariant, suppose ¥ 1is in 0(P) and the seguence

t, == & n -« is such that p(xt (9), ¥) 20 as n - =, For any integer
n

K and any 7 in [-N, N}, choose no(N) so large that t + 120, -NstsK.
By an argument similar to that used in the first part of the proof of this lemma,
there exists a subsequence s of the t, anda g N(CP) which belongs to

3

C(&, R") for each T in [-N, K] and

b, 4 (@) - & y@lg o

as n —»» uniformly for 1 in [-N, N]. By use of the diagonalization pro-

cedure, one shows there exists another subsequence ) independent of N,
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oo
a gT(Q) which belongs to C([-r, 0], E°) for each 1 1in (-», ) such

that

"xpn + L@ - g,(‘v)ll&n ~+0 a5 n -
for every integer N and all 71 in (-w, ),

It is easy to show that gT(qD) satisfies (38) for any T in (-w, «)
and it is obvious that 'go(w) = ¥. Therefore, Q(9) is invariant. Q(9) 1is
obviously connected and the leﬁma is proved.

The remainder of the results of section 2 are verified exactly as before
to obtain sufficient conditions for stability and instability for the case of

infinite time lag.
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